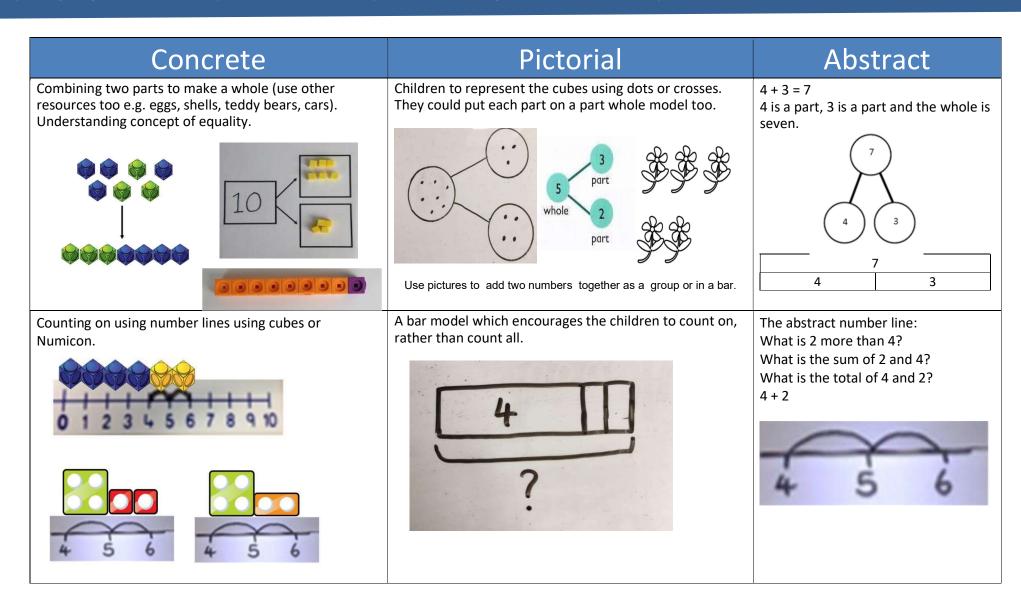
HOPTON CEVC PRIMARY

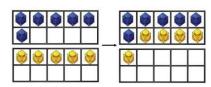
Mathematics Calculation Policy

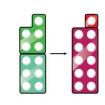
This policy has been largely adapted from the White Rose Maths Calculation Policy with further material added. It is a working document and will be revised and amended as necessary.

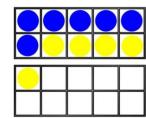

Calculation policy: Guidance

	EYFS/Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Combining two parts to make a whole: part whole model.	Adding three single digits.	Column method- regrouping.	Column method- regrouping.	Column method- regrouping.	Column method- regrouping.
Addition	Starting at the bigger number and counting on- using cubes. Regrouping to make 10 using ten frame.	Use of base 10 to combine two numbers.	Using place value counters (up to 3 digits).	(up to 4 digits)	Use of place value counters for adding decimals.	Abstract methods. Place value counters to be used for adding decimal numbers.
	Taking away ones Counting back	Counting back Find the difference	Column method with regrouping.	Column method with regrouping.	Column method with regrouping.	Column method with regrouping.
Subtraction	Find the difference	Part whole model	(up to 3 digits using place value counters)	(up to 4 digits)	Abstract for whole numbers.	Abstract methods. Place value counters
John	Part whole model Make 10 using the	Make 10 Use of base 10	111000000		Start with place value counters for decimals- with the	for decimals- with different amounts of decimal places.
رة.	ten frame				same amount of decimal places.	

	EYFS/Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Multiplication	Recognising and making equal groups. Doubling Counting in multiples Use cubes, Numicon and other objects in the classroom	Arrays- showing commutative multiplication	Arrays 2d × 1d using base 10	Column multiplication- introduced with place value counters. (2 and 3 digit multiplied by 1 digit)	Column multiplication Abstract only but might need a repeat of year 4 first(up to 4 digit numbers multiplied by 1 or 2 digits)	Column multiplication Abstract methods (multi-digit up to 4 digits by a 2 digit number)
Division	Sharing objects into groups Division as grouping e.g. I have 12 sweets and put them in groups of 3, how many groups? Use cubes and draw round 3 cubes at a time.	Division as grouping Division within arrays- linking to multiplication Repeated subtraction	Division with a remainder-using lollipop sticks, times tables facts and repeated subtraction. 2d divided by 1d using base 10 or place value counters	Division with a remainder Short division (up to 3 digits by 1 digit-concrete and pictorial)	Short division (up to 4 digits by a 1 digit number including remainders)	Short division Long division with place value counters (up to 4 digits by a 2 digit number) Children should exchange into the tenths and hundredths column too


Calculation policy: Addition


Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

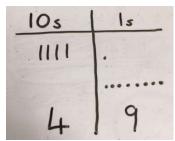

Regrouping to make 10; using ten frames and counters/cubes or using Numicon.

6 + 5

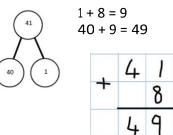
Children to draw the ten frame and counters/cubes.

Children to develop an understanding of equality e.g.

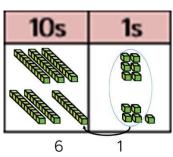
$$6 + 5 = 5 + \Box$$


$$6 + 5 = \Box + 4$$

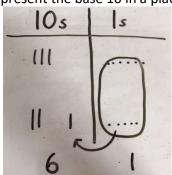
TO + O using base 10. Continue to develop understanding of partitioning and place value. 41 + 8



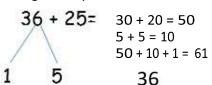
Children to represent the base 10 e.g. lines for tens and dot/crosses for ones.



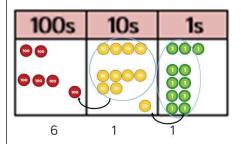
41 + 8



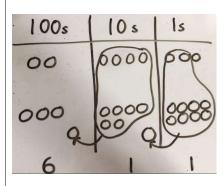
TO + TO using base 10. Continue to develop understanding of partitioning and place value.


36 + 25

Children to represent the base 10 in a place value chart.

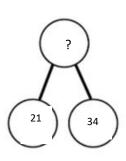


Looking for ways to make 10.



Formal method:

Use of place value counters to add HTO + TO, HTO + HTO etc. When there are 10 ones in the 1s column- we exchange for 1 ten, when there are 10 tens in the 10s column- we exchange for 1 hundred.



Children to represent the counters in a place value chart, circling when they make an exchange.

243

Conceptual variation; different ways to ask children to solve 21 + 34

	?
21	34

Word problems:

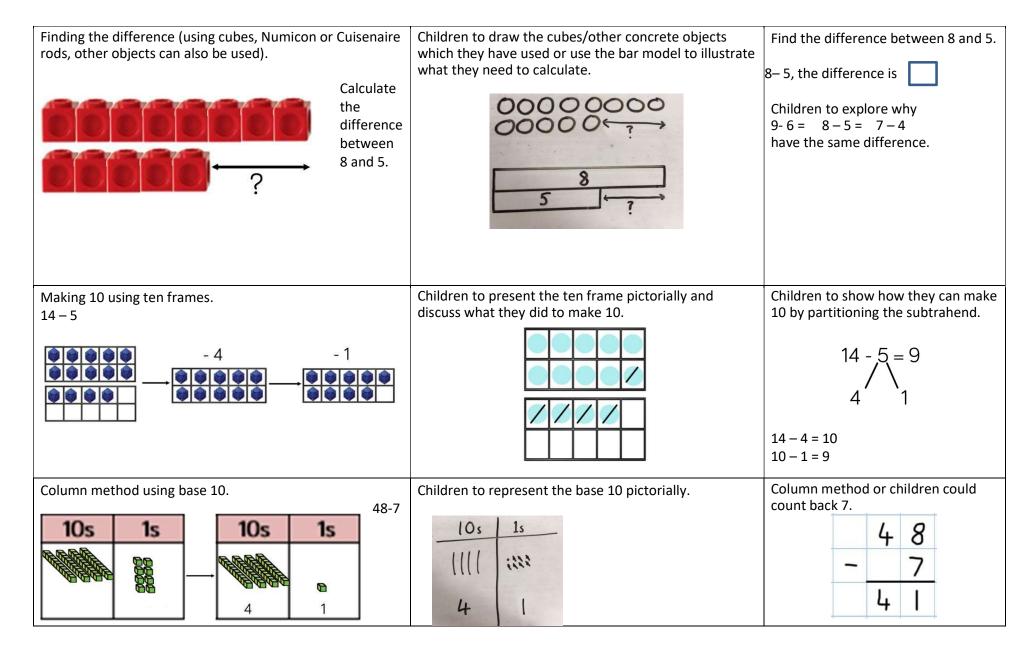
In year 3, there are 21 children and in year 4, there are 34 children. How many children in total?

21

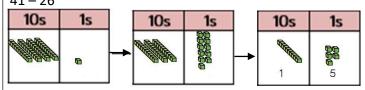
<u>+34</u>

21 + 34 =

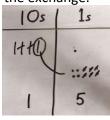
Calculate the sum of twenty-one and thirty-four.



Missing digit problems:

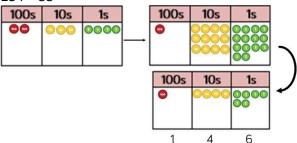

10s	1s	
10 10	0	
0 0 0	?	
?	5 -	

Calculation policy: subtraction

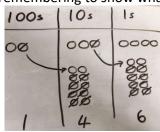

Concrete	Pictorial	Abstract
Physically taking away and removing objects from a whole (ten frames, Numicon, cubes and other items such as beanbags could be used). 4 – 3 = 1	Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used.	4-3 =
Counting back (using number lines or number tracks) children start with 6 and count back 2. $6-2=4$ 1 2 3 4 5 6 7 8 9 10	Children to represent what they see pictorially e.g.	Children to represent the calculation on a number line or number track and show their jumps. Encourage children to use an empty number line

Column method using base 10 and having to exchange. 41-26

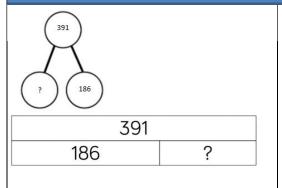
Represent the base 10 pictorially, remembering to show the exchange.



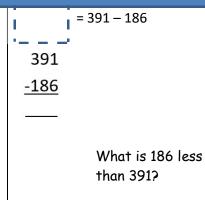
Formal column method. Children must understand that when they have exchanged the 10 they still have 41 because 41 = 30 + 11.



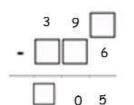
Column method using place value counters.



Represent the place value counters pictorially; remembering to show what has been exchanged.


Formal column method. Children must understand what has happened when they have crossed out digits.

Conceptual variation; different ways to ask children to solve 391 - 186



Raj spent £391, Timmy spent £186. How much more did Raj spend?

Calculate the difference between 391 and 186.

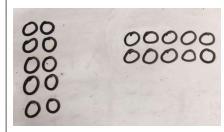
Missing digit calculations

Calculation policy: Multiplication

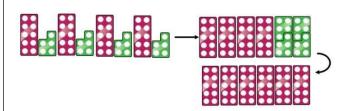
Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.

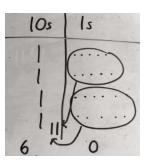
Concrete	Pictorial	Abstract
Repeated grouping/repeated addition 3 × 4 4 + 4 + 4 There are 3 equal groups, with 4 in each group.	Children to represent the practical resources in a picture and use a bar model.	3 × 4 = 12 4 + 4 + 4 = 12
Number lines to show repeated groups- 3 × 4 Cuisenaire rods can be used too.	Represent this pictorially alongside a number line e.g.:	Abstract number line showing three jumps of four. $3 \times 4 = 12$

Use arrays to illustrate commutativity counters and other objects can also be used.


$$2 \times 5 = 5 \times 2$$

2 lots of 5 5 lots of 2

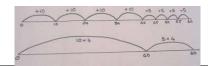

Children to represent the arrays pictorially.


Children to be able to use an array to write a range of calculations e.g.

$$10 = 2 \times 5$$

 $5 \times 2 = 10$
 $2 + 2 + 2 + 2 + 2 = 10$
 $10 = 5 + 5$

Partition to multiply using Numicon, base 10 or Cuisenaire rods. 4×15



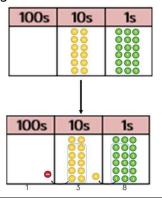
Children to represent the concrete manipulatives pictorially.

Children to be encouraged to show the steps they have taken.

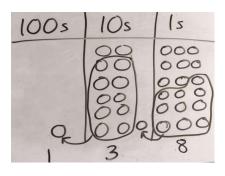
A number line can also be used

Formal column method with place value counters (base 10 can also be used.) 3×23

10s	1s
8 8 8	000
6	9


Children to represent the counters pictorially.

10s	Is
00	000
00	000
00	000
6	19

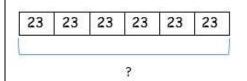

Children to record what it is they are doing to show understanding.

$$3 \times 23$$
 $3 \times 20 = 60$
 $/ \setminus 3 \times 3 = 9$
 $20 \ 3 \ 60 + 9 = 69$

× 3 69 Formal column method with place value counters. 6 x 23

Children to represent the counters/base 10, pictorially e.g. the image below.

Formal written method


When children start to multiply $3d \times 3d$ and $4d \times 2d$ etc., they should be confident with the abstract:

To get 744 children have solved 6 × 124.

To get 2480 they have solved 20×124 .

Answer: 3224

Conceptual variation; different ways to ask children to solve 6 × 23

Mai had to swim 23 lengths, 6 times a week.

How many lengths did she swim in one week?

With the counters, prove that 6 x 23 = 138

Find the product of 6 and 23

× 23 × 6

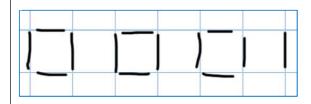
What is the calculation? What is the product?

100s	10s	1s
	000000	000000

Calculation policy: Division


Key language: share, group, divide, divided by, half.

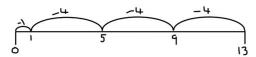
Concrete	Pictorial	Abstract
Sharing using a range of objects. 6 ÷ 2	Represent the sharing pictorially.	6 ÷ 2 = 3 Children should also be encouraged to use their 2 times tables facts.
Repeated subtraction using Cuisenaire rods above a ruler. $6 \div 2$ -2 -2 -2 -2 -2 3 groups of 2	Children to represent repeated subtraction pictorially.	Abstract number line to represent the equal groups that have been subtracted.


2d ÷ 1d with remainders using lollipop sticks. Cuisenaire rods, above a ruler can also be used.

13 ÷ 4

Use of lollipop sticks to form wholes- squares are made because we are dividing by 4.

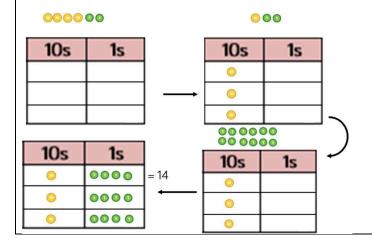
Children to represent the lollipop sticks pictorially.

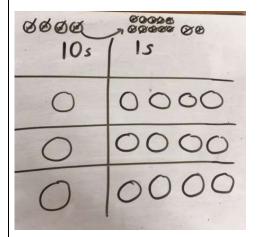


There are 3 whole squares, with 1 left over.

 $13 \div 4 - 3$ remainder 1

Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line.


'3 groups of 4, with 1 left over'


There are 3 whole squares, with 1 left over.

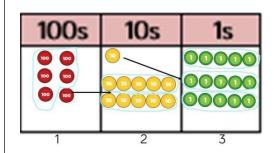
Sharing using place value counters.

$$42 \div 3 = 14$$

Children to represent the place value counters pictorially.

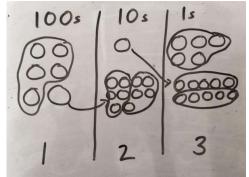
Children to be able to make sense of the place value counters and write calculations to show the process.

$$42 \div 3$$


$$42 = 30 + 12$$

$$30 \div 3 = 10$$

$$12 \div 3 = 4$$


$$10 + 4 = 14$$

Short division using place value counters to group. $615 \div 5$

- 1. Make 615 with place value counters.
- 2. How many groups of 5 hundreds can you make with 6 hundred counters?
- 3. Exchange 1 hundred for 10 tens.
- 4. How many groups of 5 tens can you make with 11 ten counters?
- 5. Exchange 1 ten for 10 ones.
- 6. How many groups of 5 ones can you make with 15 ones?

Represent the place value counters pictorially.

Children to the calculation using the short division scaffold.

Long division using place value counters

 $2544 \div 12$

1000s	100s	10s	1s	
••	0000	0000	0000	
1000s	100s	10s	1s	
			0000	

We can't group 2 thousands into groups of 12 so will exchange them.

We can group 24 hundreds into groups of 12 which leaves with 1 hundred.

$$\begin{array}{r}
 02 \\
 \hline
 12 2544 \\
 \underline{24} \\
 1
 \end{array}$$

1000s	100s	10s	1s
		0000	0000

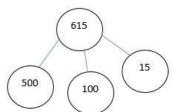
After exchanging the hundred, we have 14 tens. We can group 12 tens into a group of 12, which leaves 2 tens.

1000s	100s	10s	1s
		0000	0000 0000 0000 0000

After exchanging the 2 tens, we have 24 ones. We can group 24 ones into 2 group of 12, which leaves no remainder.

12 2544

24

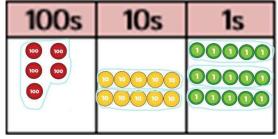

24

24

24

Conceptual variation; different ways to ask children to solve 615 ÷ 5

Using the part whole model below, how can you divide 615 by 5 without using short division?



I have £615 and share it equally between 5 bank accounts. How much will be in each account?

615 pupils need to be put into 5 groups. How many will be in each group?

5 615

 What is the calculation? What is the answer?

